In vitro characterization of nonpeptide irreversible inhibitors of HIV proteases.

نویسندگان

  • R Salto
  • L M Babé
  • J Li
  • J R Rosé
  • Z Yu
  • A Burlingame
  • J J De Voss
  • Z Sui
  • P Ortiz de Montellano
  • C S Craik
چکیده

The irreversible inhibition of human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) proteases by 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) and eight haloperidol derivatives has been studied. EPNP specifically inhibits HIV-1 and HIV-2 proteases with a stoichiometry of one EPNP molecule/dimeric enzyme. The site of modification of HIV-2 protease by EPNP has been unambiguously identified as Asp-25 using high performance tandem mass spectrometry. The haloperidol derivatives assayed consist of epoxides, ynones, and alpha,beta-unsaturated ketones. The Kinact values for these haloperidol derivatives range from 10.7 to 521 microM for HIV-1 protease and from 8.6 to 283 microM for the HIV-2 enzyme, being in some cases approximately 1000-fold more potent irreverisble inhibitors of HIV proteases than EPNP. This potency results from the haloperidol character of the compounds and the chemical reactivity of the groups capable of forming a covalent bond with the enzyme. Covalent modification of HIV-2 protease by a radiolabeled epoxide derivative of haloperidol, UCSF 84, is prevented by EPNP and the peptidomimetic transition state analog U-85548. In similar experiments, incorporation of UCSF 84 into HIV-1 protease is partially prevented by these active-site inhibitors. In contrast, a mutant HIV-1 protease, HIV-1 PR C95M, in which Cys-95 has been replaced by Met, is labeled 50% less than HIV-1 protease and is fully protected by EPNP and U-85548. These results indicate the presence of 2 reactive residues in HIV-1 protease: Cys-95 and another located in the active site of the enzyme. The alpha,beta-unsaturated ketone derivative of haloperidol, UCSF 191, which is stable over a broad pH range, was used to study the pH profile of inactivation of HIV-1 and HIV-2 proteases. Comparison of the profiles of inactivation of wild-type HIV-1 protease, HIV-1 PR C95M, and HIV-1 PR C67L as well as HIV-2 protease (which has no cysteine residues) reveals the contribution of Cys-95 to the reactivity of these irreversible inhibitors. The inhibitors UCSF 70, UCSF 84, UCSF 115, UCSF 142, and UCSF 191 reduce p55gag polyprotein processing when assayed in a mammalian cell line that produces HIV-1 viral particles lacking the envelope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL

Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...

متن کامل

Design of new potent HTLV-1 protease inhibitors: in silico study

HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity

HIV-1 integrase (IN) enzyme, one of the three main enzymes of HIV-1, catalyzed the insertion of the viral DNA into the genome of host cells. Because of the lack of its homologue in human cells and its essential role in HIV-1 replication, IN inhibition represents an attractive therapeutic target for HIV-1 treatment. Since identification of IN as a promising therapeutic target, a major progress h...

متن کامل

Isolation and Characterization of Thermophilic Alkaline Proteases Resistant to Sodium Dodecyl Sulfate and Ethylene Diamine Tetraacetic Acid from Bacillus sp. GUS1

Thermophilic Bacillus sp. GUS1, isolated from  a soil  sample obtained from citrus garden, produced at least three proteases as detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. The enzymes were stable in the alkaline pH range (8.0-12.0), with the optimum temperature and pH range of the proteases being 70ºC and 6.0-12.0, respectively. All th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 14  شماره 

صفحات  -

تاریخ انتشار 1994